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Topology and weights are closely related in weighted complex networks and this is reflected in their
modular structure. We present a simple network model where the weights are generated dynamically and
they shape the developing topology. By tuning a model parameter governing the importance of weights,
the resulting networks undergo a gradual structural transition from a module-free topology to one with
communities. The model also reproduces many features of large social networks, including the ‘‘weak
links’’ property.
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Network theory has undergone a remarkable develop-
ment over the last decade and has contributed significantly
to our understanding of complex systems, ranging from
genetic transcriptions to the Internet and human societies
[1,2]. Many complex networks are structured in terms of
modules, or communities, which are groups of nodes char-
acterized by having more internal than external connec-
tions between them. Such a mesoscopic network structure
is expected to play a concrete functional role. Conse-
quently, it is an important problem to understand how the
communities emerge during network growth. Apart from
these topological issues, it is important to realize that many
complex networks are weighted; i.e., the interaction be-
tween two nodes is characterized not only by the existence
of a link but a link with a varying weight assigned to it.
There are a number of examples, like traffic, metabolic, or
correlation based networks, which provide ample evidence
that weights have to be included in the analysis. In many
cases the weights affect significantly the properties or
function of these networks, e.g., disease spreading [3],
synchronization dynamics of oscillators [4], and motif
statistics [5]. It is natural to expect that weights have an
influence also on the formation of communities, which is
the very issue of our study.

Coupled weight-topology dynamics have earlier been
used successfully in transport networks modeling [6],
which, however, does not lead to community structure.
We show that there are mechanisms by which weights
play a crucial role in community formation. While we
believe this to be quite a general paradigm for community
formation, we have chosen to explore it within the realm of
social systems where large data sets have enabled looking
into both the coupling of network topology and interaction
strengths and properties of communities [7–10]. Under-
standing how the microscopic mechanisms translate into
mesoscopic communities and macroscopic social systems
is a key problem in its own right and one that is accessible
within the scope of statistical physics.

Large scale social networks are known to satisfy the
weak links hypothesis [11] with the implication that weak
links keep the network connected whereas strong links are
mostly associated with communities [12]. This weight-
topology coupling results from the microscopic mecha-
nisms that govern the evolution of social networks.
Network sociology identifies (a) cyclic closure and
(b) focal closure as the two fundamental mechanisms of
tie formation [13]. Cyclic closure refers to forming ties
with one’s network neighbors—‘‘friends of friends’’.
Experimental evidence indicates that the probability of
cyclic closure decreases roughly exponentially as a func-
tion of the geodesic distance [14]. Focal closure, in con-
trast, refers to forming ties independently of the geodesic
distance and is attributed to shared activities (hobbies, etc.)
[13]. These two mechanisms form the basis of the topo-
logical rules of our model. As for the weights, we have
chosen a simple scenario in which new ties are created
preferably through strong ties, every interaction making
them even stronger.

We consider a fixed size network of N nodes, where
links are created in two ways: first, in time interval �t each
node having at least one neighbor starts a weighted local
search for new acquaintances, Fig. 1(a) and 1(b). More
specifically, node i chooses one of its neighbors, node j,
with probability wij=si, where wij is the weight of the link
connecting i and j and si �

P
jwij the strength of i. If the

chosen node j has other neighbors apart from i, it chooses
one of them, say k, with probability wjk=�sj � wij�.
Therefore, the search favors strong links. If there is no
link between i and k, it is established with probability
p��t such that wik � w0. If the link exists, its weight is
increased by �. In both cases, wij and wjk are also in-
creased by �. We call this local attachment (LA), and it
corresponds to a special case, triadic closure, of the above
mentioned cyclic closure mechanism. Second, if a node
has no links, or otherwise with probability pr�t, it creates
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a link of weight w0 to a random node, Fig. 1(c). This
mechanism corresponds to establishing a new interaction
outside the immediate neighborhood of the chosen node
analoguously to focal closure, and we call it global attach-
ment (GA). Note that the requirement of potential new
friends being socially sufficiently similar to the agent, a
presupposition in models based on social affinity (see, e.g.,
[15] ), can be absorbed in p� and pr. Finally, any node can
be removed with probability pd�t by the node deletion
(ND) mechanism, whereby also the adjacent links are
removed. The removed node is replaced by a new node,
such that the size of the system remains fixed at N. ND is
the only mechanism that decreases the number of links in
the model and leads to exponentially distributed lifetime �
for nodes and �w for links, averages of which are h�i �
p�1
d and h�wi � �2pd��1.
The model was studied by simulations, which were

started from a seed network of N nodes without any links.
Subsequent changes due to LA and GA mechanisms were
updated using parallel update, followed by the ND step. We
set �t � 1 andw0 � 1 without loss of generality. The time
scale is fixed by the death rate pd, which was set to 10�3

corresponding to h�i � 103 time units. The random link
probability was set to pr � 5� 10�4, corresponding to
adding on average one random link to each node during
average node lifetime. The network algorithm was found to
reach steady state in �10–20 average node lifetimes, after
which all measured characteristics were found to be sta-
tionary. The following results were obtained by running the
simulations for 25� 103 time steps.

The weights enter the model dynamics through parame-
ter �. In order to compare networks resulting from different
values of �, we have chosen to keep the average degree
hki � 10 constant. Thus, the number of links is roughly the
same in all networks and changes in the structure result
solely from restructuring them. Keeping hki constant re-
quires adjusting p� for each �, which can be done easily as
their dependence is a smooth monotonous function [16].
When � � 0 we obtain unweighted networks that resemble
those obtained by certain older models [17,18] without

apparent community structure. However, increasing � re-
sults in locally denser networks in which communities
clearly appear as seen in Fig. 2. This can be attributed to
the effect of � in the LA mechanism. The higher the value
of �, the more trapped the local searches become; i.e., they
repeatedly follow the same link, simultaneously increasing
the weights of these links and the associated triangles,
which in turn further enhances the trapping effect. Thus,
in the transient state of model dynamics any emerging
triangle starts to rapidly accumulate weight, acting as a
nucleus for community formation.

We consider first the topological structure of the model
networks and study the communities using the k-clique
percolation, a purely topological method that defines com-
munities in terms of adjacent cliques [8,19]. It avoids the
problems of modularity-based methods [20–22] that may
not properly resolve communities if their size distribution
is broad. The LA mechanism, which is mainly responsible
for introducing new links, generates at least one triangle
per added link. Therefore, we focus on 4-cliques, the
smallest nontrivial cliques beyond triangles. Figure 3
shows the relative largest community size Rk�4 and aver-
age community size excluding largest community hnsi for
� 2 �0; 1	. When � � 0 communities are mainly very
small, hnsi � 6 and the largest ones contain �50 nodes.
Increasing � changes the network structure significantly.
At first, the network becomes homogeneous in the sense
that the 4-cliques percolate through most of the system, but
as � becomes larger the nodes begin to condensate in
tighter communities. This can be seen as an increase in
hnsi and simultaneous decrease in Rk�4. When � * 0:2 the
network contains communities whose hnsi � 20 while the

FIG. 2 (color online). Snowball samples [27] of networks with
(a) � � 0, (b) � � 0:1, (c) � � 0:5, and (d) � � 1. Link colors
change from green (weak) to yellow and red (strong links).

FIG. 1 (color online). The model algorithm. (a) A weighted
local search starts from i and proceeds first to j and then to k,
which is a neighbor of i. (b) The local search from i ends to k0,
which is not a neighbor of i. In this case link wik0 is established
with probability p�. (c) Node i creates a random link to random
node l with probability pr. In cases (a) and (b) the weights of
involved links are increased by �.
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largest ones consist of several hundred nodes. The proba-
bility for communities of size larger than 50 to occur is
several orders of magnitude higher for � * 0:2 than for
� � 0. Similar results were obtained for k-clique percola-
tion with k � 3 and k � 5. The community size distribu-
tion was found to be stable after �10 average node
lifetimes. This can be understood in the large � limit by
considering the change in the size Ns of community s.
When � is large the LA process mostly follows the strong
within-community links and we can assume that commun-
ity merging is rare. We can now estimate the change in Ns
as

 

dNs
dt
� �pdNs 
 pdN

Ns
N
� 0; (1)

where the first term on the right-hand side follows from the
fact that any of theNS nodes in s is deleted with probability
pd, and the second reflects the fact that of all of the pdN
deleted nodes, a fraction of Ns=N will form an initial,
random link to community s, thus becoming a member
of that community at subsequent time steps by the LA
process. This shows that once the algorithm has reached
a state in which most local searches remain in the initial
community, the community size distribution becomes sta-
tionary. Figures 2 and 3 indicate that � * 0:5 can already
be regarded as ‘‘large’’, because the communities are tight
and increasing � does not change them significantly.

Next, we consider the effect of � on weight-topology
correlations and study the network structure with link
percolation. Weak links hypothesis implies that links
within communities are strong whereas links between
them are weak. Therefore, if the network has such a
structure, it should disintegrate faster when links are re-
moved in ascending than in descending order of weight, as
observed in [7]. Here we remove links from the network in
both orders while monitoring the network properties as a
function of fraction of removed links f, which acts as a
control parameter. We have measured the relative size of
the giant component RLCC serving as an order parameter,
the ‘‘normalized susceptibility’’ ~s �

P
nss2=N, where ns

is the number of components of size s and the sum is taken

over all but the largest component, and the average cluster-
ing coefficient hci [23]. Figure 4 shows link percolation
results for networks for � 2 �0; 1	. For small values of � it
appears that there is no community structure compatible
with the weak links hypothesis, as the giant component is
destroyed at the same point for both removal orders and ~s
remains very small. However, when � * 0:1 the networks
start to break faster when weak links are removed first and
~s develops a finite signature of divergence, indicating that
the weak links serve as bridges connecting communities.
This is also corroborated by the rapid decrease in hci when
strong links are removed first (see inset). This effect was
also verified, similarly to Refs. [7,24], using a topological
overlap measure, which was found to increase clearly as a
function of link weight when � * 0:1 (not shown).

Finally, as our model is inspired by mechanisms of
social network formation, we investigate whether it repro-
duces other properties of social networks. The picture
emerging from analysis of a number of large databases
[7,24–26] shows several common features: (i) degree dis-
tributions are skewed, (ii) high-degree nodes are often
connected to other high-degree nodes (assortative mixing),
(iii) the average clustering coefficient hci is high compared
to random networks, and (iv) the average shortest path
lengths are small (the small-world property). Figure 5
presents the basic distributions for network quantities
with � 2 �0; 1	. The degree distribution was found to be
almost independent of �. It has quite a fast decaying tail
with the maximum degree �102 for networks with hki �
10 and can be fitted reasonably with an exponential distri-
bution. The networks show high clustering behaving al-
most as c�k� � 1=k. The model networks are also found to
be assortative and the diameter grows as logN, Fig. 5(c)
and 5(d).

〈 〈
〉〉

FIG. 4 (color online). RLCC and ~s for link percolation. Left:
weak links removed first; right: strong links removed first. Insets:
average clustering. Results are averaged over 50 realizations of
N � 5� 104 networks. Values of � are 0 (�), 1� 10�3 (*), 1�
10�2 (�), 0.1 (4), 0.5 (5), and 1 (�).

〈
〉

FIG. 3. Rk�4 (�) and hnsi (4) as a function of �. Results are
averaged over 50 realizations of N � 5� 104 networks. Error
bars are measured standard deviations.
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In this Letter we have introduced a simple weighted
network model in which the weights are an essential part
of the microscopic mechanisms. They establish a coupling
between network structure and interaction strengths: addi-
tion of a new link depends on the existing weights, and
once a new link is added the weights that led to its for-
mation are strengthened. Communities will emerge only if
this strengthening is strong enough, i.e., if nodes favor
sufficiently their strong connections in the process of es-
tablishing new ones. Our study supports the notion that
communities result from initial structural fluctuations that
become amplified by repeated application of the micro-
scopic processes. In addition to fulfilling the standard
topological properties of social networks, the model net-
works exhibit a coupling between network topology and
interaction strengths, which is compatible with the weak
links hypothesis. Most importantly, this model provides a
starting point for understanding the formation of commun-
ities in weighted networks.
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[6] A. Barrat, M. Barthélemy, and A. Vespignani, Phys. Rev.
Lett. 92, 228701 (2004).
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FIG. 5 (color online). The model meets criteria (i)–(iv) for
social networks (see text) when � 2 �0; 1	. (a) Degree distribu-
tion, (b) clustering, (c) average nearest neighbor degree knn, and
(d) sampled network diameter as a function of network size N.
Results for (a)–(c) are averaged over 50 realizations of N �
5� 104 networks. The corresponding distributions for the mo-
bile phone call network studied in Ref. [7] are marked by 

(note that this network has average degree hki � 3:14); the
exponential fit in (a) is shown as a solid line, while other symbols
are as in Fig. 4.
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